Reactions of $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$: synthesis and structures of $\left[\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right](\mu-\mathrm{RS})\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{R}=$ alkyl, phenyl or acyl)

Zhong-Xia Wang ${ }^{\text {a,* }}$, Hui Zhao ${ }^{\text {a }}$, Zhong-Yuan Zhou ${ }^{\text {b }}$, Xiang-Ge Zhou ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
${ }^{\mathrm{b}}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, PR China

Received 21 June 1999; received in revised form 19 August 1999; accepted 23 September 1999

Abstract

The reaction of $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ forms $\left(\mu_{3}-\mathrm{S}_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}(\mathbf{1})\right.$ and/or anionic intermediates $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\operatorname{CHR}^{2}\right\}(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}$(2) depending on the substituents R^{1} and R^{2}. The actions of the anionic complexes 2 with alkyl halides, $\mathrm{PhN}_{2} \mathrm{BF}_{4}$ and acid chlorides give $\left[\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right](\mu-\mathrm{RS})\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{R}=$ alkyl, Ph or acyl). The structures of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right]\left(\mu-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$ and ($\left.\mu-\eta^{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{furyl}-2\right][\mu-\mathrm{PhCH}=$ $\mathrm{CHC}(\mathrm{O}) \mathrm{S}]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ were determined by single-crystal X-ray diffraction. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Iron; Alkenyl ligand; Bridging-sulfur ligand; Complexes; Synthesis; Structures

1. Introduction

The anionic complexes $\left[\left(\mu-\eta^{2}-C\left(R^{1}\right)=\right.\right.$ CHR $\left.^{2}\right)(\mu-$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$have shown interesting reactivity towards electrophiles and acetylenes, $\mathrm{C}-\mathrm{C}$ bond formation being observed in most cases [1-5]. The anions also readily take up heteroatom-bridging ligands to give complexes of type $\left[\left(\mu-\eta^{2}-C\left(R^{1}\right)=\right.\right.$ CHR $\left.^{2}\right)(\mu-$ $\mathrm{X}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ where $\mathrm{X}=\mathrm{Cl}$ [6], SR [7] or PR_{2} [8]. In a related study, we reported the reaction of $\left[\left(\mu-\eta^{2}-\right.\right.$ $\left.\mathrm{CH}=\mathrm{CHPh})(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, forming a tetranuclear anionic complex $\left[\left(\mu-\eta^{2}-\right.\right.$ $\left.\mathrm{CH}=\mathrm{CHPh})(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}[9]$. In an attempt to determine how general the reaction is, we have investigated the reaction of $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right.$ or $\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Et}$ or 2 -furyl) with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The reactivity of the formed anionic complexes $\left[\left\{\mu-\eta^{2}\right.\right.$ -$\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}$toward alkyl halides, $\mathrm{PhN}_{2} \mathrm{BF}_{4}$ and acid chlorides was studied.

[^0]The crystal structures of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\left(\mu-\mathrm{CH}_{2}=\right.$ $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$ and $\left(\mu-\eta^{2}-\mathrm{CH}=\right.$ CH -furyl-2) $[\mu-\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{S}]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ were determined.

2. Results and discussion

The reaction of $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}-\right.$ $\left.(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and the synthesis of complexes 1, 3a-3d, $\mathbf{4}$ and $5 \mathbf{5 a}-\mathbf{5 c}$ are summarized in Scheme 1. Reaction of $\left[\left\{\mu-\eta^{2}-C\left(R^{1}\right)=C H R^{2}\right\}(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$in THF with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ proceeded readily at $-78^{\circ} \mathrm{C}$, as indicated by gas evolution and by red-brown to red-orange color change. After treatment of the reaction mixture with an electrophile, two products were usually formed: $\left(\mu_{3}-\mathrm{S}_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}(\mathbf{1})\right.$ and $\left[\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right](\mu-\mathrm{RS})\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)\left[\mathrm{R}=\mathrm{R}^{3}, \mathrm{Ph}\right.$ or $\left.R^{4} C(O)\right]$. When $R^{1}=R^{2}=H$ or Ph in $\left[\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$, only complex 1 was isolated. Further experiments showed that complex 1 was formed in the step of reaction of $\left[\left\{\mu-\eta^{2}\right.\right.$ -$\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$,
regardless of the alkyl halides added ((i) in Scheme 1). Another species formed by reaction of $\left[\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ is assumed to be an anionic complex $\left[\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-} \quad$ (2) ((ii) in Scheme 1), in which the sulfur-sulfur bond of $(\mu-$ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ is cleaved by the iron-centered anions [5,8] and the $\mu-\mathrm{CO}$ ligand of $\left[\left\{\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$is replaced by one of the sulfur atoms of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. Treatment of the anions 2 in situ with $\mathrm{R}^{3} \mathrm{X}\left(\mathrm{R}^{3} \mathrm{X}=\mathrm{EtBr}, \mathrm{PhCH}_{2} \mathrm{Cl}\right.$ or $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}\right)$ gave neutral complexes $\left[\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right]\left(\mu-\mathrm{R}^{3} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}-\right.$ $\left.(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{3 a}-\mathbf{3 d})$ ((iii) in Scheme 1), and with $\mathrm{PhN}_{2} \mathrm{BF}_{4}$ or $\mathrm{R}^{4} \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left(\mathrm{R}^{4}=\mathrm{Ph}, \mathrm{CH}=\mathrm{CHPh}\right.$ or Me$)$ yielded $\left[\mu-\eta^{2}-\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right](\mu-\mathrm{PhS})\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(4)$ $\left(R^{1}=\mathrm{Me}, \quad \mathrm{R}^{2}=\mathrm{H}\right) \quad\left((\mathrm{iv})\right.$ in Scheme 1) and $\left[\mu-\eta^{2}\right.$ -$\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right]\left[\mu-\mathrm{R}^{4} \mathrm{C}(\mathrm{O}) \mathrm{S}\right]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{5 a}-\mathbf{5 c})((\mathrm{v})$ in Scheme 1), respectively. It is worth pointing out that the reaction of $2\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right)$ with $\mathrm{PhN}_{2} \mathrm{BF}_{4}$ formed a complicated mixture. Only two of the components were separated and identified as $\mathbf{1}$ and the expected complex. The others were too tiny to separate. The relatively low yields of products $\mathbf{3 a}-\mathbf{3 d}$ and $\mathbf{5 a}-\mathbf{5 c}$ may be attributed to the extensive decomposition in the course of the reactions.

Complex 1 is known. It was characterized by elemental analysis and by comparison of its melting point and IR spectral data to those of authentic sample [10]. The complexes $\mathbf{3 a}-\mathbf{3 d}, \mathbf{4}$ and $\mathbf{5 a}-\mathbf{5 c}$ are air stable in solid state, but decompose slowly in solution when exposed to air. They are very soluble in polar organic solvents
such as methylene chloride and soluble in petroleum ether. These new compounds were characterized by elemental analyses, IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The IR spectrum of each of complexes $\mathbf{3 - 5}$ showed terminal carbonyl bands, ranging from 1965 to $2087 \mathrm{~cm}^{-1}$. For complexes $\mathbf{5 a}-\mathbf{5 c}$ the absorption bands of thiocarboxylato groups were also observed. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of complexes $\mathbf{3}-\mathbf{5}$ indicated that each of them exists only as one conformer, although there are two possible conformational isomers, \mathbf{A} and \mathbf{B}, according to the orientations of the $\mathrm{S}-\mathrm{R}$ ligand to the cluster core. Each of the complexes $\mathbf{3 a}-\mathbf{3 d}$ and $\mathbf{5 c}$ can be attributed to equatorial isomer \mathbf{A} by comparing the chemical shifts of SR groups with the reported data for complexes $(\mu-$ $\mathrm{RS})\left(\mu-\mathrm{R}^{\prime} \mathrm{S}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6} \quad$ or $\quad\left[(\mu-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}(\mu-\mathrm{S}-\mathrm{S}-\mu)$ [11,12]. For example, the chemical shift of SCH_{2} at 2.49 ppm for $3 \mathbf{a}$ is very close to that of equatorial $\mathrm{C}_{2} \mathrm{H}_{5}$ $\left(\delta_{\mathrm{SCH}_{2}}=2.44 \mathrm{ppm}\right)$ in complex $\left[(\mu-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}(\mu-$ $\mathrm{S}-\mathrm{S}-\mu)^{2}$, rather than to the axial one $\left(\delta_{\mathrm{SCH}_{2}}=1.92 \mathrm{ppm}\right)$ [11]. For complexes $\mathbf{4}$ and $\mathbf{5 a} \mathbf{- 5 b}$, however, the available data do not allow us to say which is present in the respective product, but it seems that isomer \mathbf{B} is disfavored by repulsion between the axial R group and terminal carbonyls. This deduction was confirmed by single-crystal X-ray diffraction results of complexes 3d and $\mathbf{5 b}$ (see below). The coupling constants of ethenyl protons, ranging from 12.4 to 14.4 Hz , for $\mathbf{3 c}$, 3d, 5b and $5 \mathbf{c}$ also indicated that the protons exist in a trans configuration. In addition, single-crystal X-ray diffraction analysis of $\mathbf{3 d}$ also showed the presence of cyclohexane molecule in the crystal. The cyclohexane

Scheme 1. Reagents and conditions: (i) THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$ then r.t., stirred 4 h ; (ii) $\mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (iii) $\mathrm{R}^{3} \mathrm{X}$ ($\mathrm{R}^{3} \mathrm{X}=\mathrm{EtBr}$ for $\mathbf{3 a}$ and $\mathbf{2 c}, \mathrm{PhCH}_{2} \mathrm{Cl}$ for $\mathbf{3 b}$ and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ for $\mathbf{3 d}$), $-78^{\circ} \mathrm{C}$ to r.t., stirred $6 \mathrm{~h}\left(16 \mathrm{~h}\right.$ for $\mathbf{3 a}$); (iv) $\mathrm{PhN}_{2} \mathrm{BF}_{4},-78^{\circ} \mathrm{C}$ to r.t., stirred 16 h ; (v) $\mathrm{R}^{4} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ $\left(\mathrm{R}^{4}=\mathrm{Ph}\right.$ for $\mathbf{5 a}, \mathrm{PhCH}=\mathrm{CH}$ for $\mathbf{5 b}, \mathrm{Me}$ for $\left.\mathbf{5 c}\right),-78^{\circ} \mathrm{C}$ to r.t., stirred 6 h .

Fig. 1. ORTEP diagram of 3d showing the 40% probability thermal ellipsoids.
molecule may come from crystallizing solvent petroleum ether.

A

B
2.1. Structure of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\left(\mu-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~S}\right)$ -$\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}\left(3 \mathrm{~d} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}\right)$

The molecular structure of the complex present in $\mathbf{3 d} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$ is shown in Fig. 1. Selected bond distances and angles are listed in Table 1. The crystal structure of $\mathbf{3 d} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$ is shown in Fig. 2. The molecule consists of two doubly bridged $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ units joined to a common bridging sulfur atom ligand. One of the units is also bridged by a $\mu-\eta^{2}$-phenylethenyl group and the other by a thioallyl group. The orientation of the allyl is equatorial. The common bridging sulfur atom is situated at the center of a distorted tetrahedron made up of four iron atoms. The dihedral angle between the $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{S}(1)$ plane and $\mathrm{Fe}(3) \mathrm{Fe}(4) \mathrm{S}(1)$ plane is 84.46°. The overall structure is similar to those of $\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mu-2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ [13] and ($\mu-$ $\left.\mathrm{Me}_{2} \mathrm{NCS}\right)\left(\mu-\mathrm{Me}_{2} \mathrm{NC}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ [14]. The $\mathrm{Fe}-\mathrm{S}$ distances to the central sulfur atom [2.236(1)-2.259(1) \AA, av. $2.249 \AA$) are about the same as those found in complexes $\left(\mu-\mathrm{CH}_{3} \mathrm{~S}\right)_{2}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ (av. $2.248 \AA$) [15], $\quad\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mu-2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right) \quad$ (av.
$2.249 \AA$ A) [13] and $\left(\mu-\mathrm{Bu}^{\prime} \mathrm{S}\right)\left(\mu-\mathrm{PhCH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ (av. $2.247 \AA$) [16]. The $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ distance of 2.5336(9) \AA is close to those in $\left(\mu-\mathrm{CH}_{3} \mathrm{~S}\right)_{2}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}-$ $\left(\mu_{4}-\mathrm{S}\right)(\mathrm{av} .2 .540 \AA$ A) $[15]$ and (μ - $\mathrm{PhC} \equiv \mathrm{CS}$) $(\mu-\mathrm{EtS})$ -$\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ (av. $2.536 \AA$) [17]. The $\mathrm{Fe}(3)-\mathrm{Fe}(4)$ distance of $2.557(1) \AA$ is also comparable to that found in $\left.\left(\mu-\mathrm{PhCH}_{2} \mathrm{~S}\right)\left(\mu-\eta^{2}-\mathrm{PhC}=\mathrm{CHPh}\right)-\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right] \quad$ (2.569(2) \AA). The $\mathrm{Fe}-\mathrm{C}$ distances to the ethenyl ligand (av. 2.102

Table 1
Selected bond distances ((\AA) and angles $\left({ }^{\circ}\right)$ for complex 3d

Bond distances			
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.5336(9)$	$\mathrm{Fe}(3)-\mathrm{C}(13)$	$2.099(4)$
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.259(1)$	$\mathrm{Fe}(3)-\mathrm{C}(14)$	$2.234(4)$
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.268(1)$	$\mathrm{Fe}(4)-\mathrm{S}(1)$	$2.236(1)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.242(1)$	$\mathrm{Fe}(4)-\mathrm{C}(13)$	$1.975(4)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.256(1)$	$\mathrm{S}(2)-\mathrm{C}(21)$	$1.833(5)$
$\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$2.557(1)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.390(6)$
$\mathrm{Fe}(3)-\mathrm{S}(1)$	$2.258(1)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.486(6)$
Bond angles			
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{S}(1)$	$55.44(3)$	$\mathrm{S}(1)-\mathrm{Fe}(4)-\mathrm{C}(13)$	$85.8(1)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{S}(2)$	$55.72(4)$	$\mathrm{Fe}(3)-\mathrm{C}(13)-\mathrm{Fe}(4)$	$77.7(1)$
$\mathrm{Fe}(4)-\mathrm{Fe}(3)-\mathrm{S}(1)$	$54.93(3)$	$\mathrm{Fe}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	$76.6(2)$
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	$76.39(4)$	$\mathrm{Fe}(4)-\mathrm{C}(13)-\mathrm{C}(14)$	$130.4(3)$
$\mathrm{Fe}(4)-\mathrm{Fe}(3)-\mathrm{C}(14)$	$79.2(1)$	$\mathrm{Fe}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	$66.1(2)$
$\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{C}(13)$	$82.4(1)$	$\mathrm{Fe}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$122.1(3)$
$\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{C}(14)$	$82.7(1)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$125.1(4)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{S}(1)$	$56.05(3)$	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$	$68.51(4)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{S}(2)$	$56.16(4)$	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(3)$	$138.33(5)$
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{S}(2)$	$76.95(4)$	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$128.44(5)$
$\mathrm{C}(13)-\mathrm{Fe}(3)-\mathrm{C}(14)$	$37.3(1)$	$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(3)$	$132.21(5)$
$\mathrm{Fe}(3)-\mathrm{Fe}(4)-\mathrm{S}(1)$	$55.72(3)$	$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$132.21(5)$
$\mathrm{Fe}(4)-\mathrm{Fe}(3)-\mathrm{C}(13)$	$49.0(1)$	$\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$69.35(4)$
$\mathrm{Fe}(3)-\mathrm{Fe}(4)-\mathrm{C}(13)$	$53.3(1)$	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$68.12(4)$

Fig. 2. The unit cell of crystalline $3 \mathrm{~d} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$.
\AA) are close to those in $\left(\mu-\mathrm{PhCH}_{2} \mathrm{~S}\right)\left(\mu-\eta^{2}-\mathrm{PhC}=\mathrm{CHPh}\right)-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (av. $2.097 \AA$), but the $\mathrm{C}-\mathrm{C}$ distance of the ethenyl is shorter [1.390(6) vs. $1.440(10) \AA$ in (μ $\left.\left.\mathrm{PhCH}_{2} \mathrm{~S}\right)\left(\mu-\eta^{2}-\mathrm{PhC}=\mathrm{CHPh}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]$ [18]. The angles are of the expected values except $\mathrm{Fe}(4)-\mathrm{C}(13)-$ $\mathrm{C}(14)\left[130.4(3)^{\circ}\right]$, which is greater than those corresponding in complexes $\left(\mu-\mathrm{PhCH}_{2} \mathrm{~S}\right)\left(\mu-\eta^{2}-\mathrm{PhC}=\mathrm{CHPh}\right)-$ $\left.\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]\left[120.9(5)^{\circ}\right][18]$ and $\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\right)\left(\mu-\eta^{2}-\mathrm{PhC}=\right.$ $\left.\mathrm{CHPh}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]\left[120.4(6)^{\circ}\right][8]$.

2.2. Structure of ($\mu-\eta^{2}-\mathrm{CH}=\mathrm{CH}-$-furyl-2) $[\mu-\mathrm{Ph}-$ $\mathrm{CH}=\mathrm{CHC}(\mathrm{O}) \mathrm{S}_{3}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(5 b)$

The molecular structure and the atom numbering scheme of complex $\mathbf{5 b}$ is shown in Fig. 3. Selected bond distances and angles are presented in Table 2. The structure of complex $\mathbf{5 b}$ is very similar to that of complex 3d. Most of the bond lengths and angles are also comparable to those of complex 3d. However, some differences were also noticed. For example, the dihedral angle between the $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{S}(2)$ plane and $\mathrm{Fe}(3) \mathrm{Fe}(4) \mathrm{S}(2)$ plane in complex $\mathbf{5 b}$ is 88.9°, greater than that in complex $\mathbf{3 d}\left(84.46^{\circ}\right)$. In addition, as seen
from Fig. 3, the substitute $\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O})$ is attached to bridged $\mathrm{S}(1)$ atom by an e-type of bond and the ethenyl protons of $\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O})$ group is trans, which is consistent with the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data.

3. Experimental

All reactions were carried out under nitrogen using standard Schlenk techniques. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}$ [19], $\mathrm{PhN}_{2} \mathrm{BF}_{4} \quad$ [20], acid chlorides $[\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}, \quad 2$-furyl- $\mathrm{CH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}, \quad \mathrm{EtCH}=$ $\left.\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}, \quad \mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}\right] \quad[21], \quad \mathrm{Na}^{+}\left[\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{CHR}^{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-} \quad[5]$ and $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}-$ $(\mathrm{CO})_{6}$ [22] were prepared by published procedures. The progress of all reactions was monitored by thinlayer chromatography. Infrared spectra (KBr disc) were obtained by using a Bruker VECTOR22 spectrometer. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on either a Varian EM360L or a Bruker DMX500 spectrometer

Fig. 3. ORTEP diagram of $\mathbf{5 b}$ showing the 20% probability thermal ellipsoids.
with a CDCl_{3} solvent. Elemental analyses were performed with a Perkin-Elmer 240C analyzer. Melting points were uncorrected.

3.1. Reaction of $\left[\left\{\mu-\eta^{2}-C(R)=C H R\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$

 ($R=$ Ph or H) with $\left(\mu-S_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$$\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.38 \mathrm{~g}, 1.10 \mathrm{mmol})$ was added to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\left[\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{Ph})=\mathrm{CHPh}\right\}(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.48 \mathrm{~g}$, $1.26 \mathrm{mmol}), \mathrm{PhC} \equiv \mathrm{CPh}(0.23 \mathrm{~g}, 1.29 \mathrm{mmol})$ and trifluoroacetic acid ($0.1 \mathrm{ml}, 1.30 \mathrm{mmol}$) in THF $\left(30 \mathrm{~cm}^{3}\right)$. After stirring for 30 min at $-78^{\circ} \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{Cl}\left(0.1 \mathrm{~cm}^{3}\right.$, 1.40 mmol) was syringed into the solution. The mixture was warmed to room temperature (r.t.) and stirred overnight. The solvent was removed at reduced pressure and the residue was extracted with petroleum ether and filtered. After removal of solvent, the mixture was purified by filtration chromatography. Petroleum ether eluted a purple-red band which gave $\left(\mu_{3}-\mathrm{S}_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}\right.$ $(0.17 \mathrm{~g}, 48 \%)$, m.p. $112-114^{\circ} \mathrm{C}$. Anal. Found: C, 22.51 . $\mathrm{C}_{9} \mathrm{Fe}_{3} \mathrm{O}_{9} \mathrm{~S}_{2}$ requires: C, 22.35%. IR: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2099 \mathrm{~m}$, $2077 \mathrm{~m}, 2064 \mathrm{~s}, 2040 \mathrm{~s}, 2017 \mathrm{~s}, 2000 \mathrm{~s}$, 1988s (CO).

A similar reaction was carried out by treatment of $\left[\left\{\mu-\eta^{2}-\mathrm{CH}=\mathrm{CH}_{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.29 \mathrm{~g}, 0.76 \mathrm{mmol})$, trifluoroacetic acid $\left(0.06 \mathrm{~cm}^{3}, 0.77 \mathrm{mmol}\right)$ and acetylene gas in THF ($20 \mathrm{~cm}^{3}$) with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.24 \mathrm{~g}, 0.70 \mathrm{mmol})$ and successive $\mathrm{PhCH}_{2} \mathrm{Cl}\left(0.1 \mathrm{~cm}^{3}, 0.87 \mathrm{mmol}\right)$. After work-up, complex $1(0.12 \mathrm{~g}, 49 \%)$ was obtained as needle crystals, m.p. $112-114^{\circ} \mathrm{C}$.

Reaction was also carried out according to the same procedure and scale as above but in the absence of $\mathrm{PhCH}_{2} \mathrm{Cl}$. After stirring for 4 h at r.t., complex $\mathbf{1}$ was obtained.

3.2. Preparation of $\left[\mu-\eta^{2}-C(M e)=\mathrm{CH}_{2}\right](\mu-E t S)$ -$\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{3 a})$

Addition of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.46 \mathrm{~g}, 1.34 \mathrm{mmol})$ to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\left[\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\right.$ -$\left.(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.84 \mathrm{~g}$,

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex $\mathbf{5 b}$

Bond distances			
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.2486(11)$	$\mathrm{Fe}(4)-\mathrm{C}(10)$	$1.956(3)$
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.2815(11)$	$\mathrm{Fe}(4)-\mathrm{S}(2)$	$2.2271(11)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.5346(9)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.841(3)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.2597(11)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.203(4)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.2635(12)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.468(4)$
$\mathrm{Fe}(3)-\mathrm{C}(10)$	$2.097(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.299(5)$
$\mathrm{Fe}(3)-\mathrm{C}(11)$	$2.239(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.479(5)$
$\mathrm{Fe}(3)-\mathrm{S}(2)$	$2.2592(12)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.405(5)$
$\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$2.5662(11)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.459(4)$
Bond angles			
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{S}(1)$	$76.20(4)$	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Fe}(1)$	$111.77(13)$
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$56.00(3)$	$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$	$67.79(4)$
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$55.77(4)$	$\mathrm{Fe}(4)-\mathrm{S}(2)-\mathrm{Fe}(1)$	$131.40(4)$
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{S}(1)$	$76.34(4)$	$\mathrm{Fe}(4)-\mathrm{S}(2)-\mathrm{Fe}(3)$	$69.78(3)$
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.58(3)$	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(3)$	$134.68(4)$
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$56.44(3)$	$\mathrm{Fe}(4)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$129.72(4)$
$\mathrm{C}(10)-\mathrm{Fe}(3)-\mathrm{C}(11)$	$37.63(13)$	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$68.42(3)$
$\mathrm{C}(10)-\mathrm{Fe}(3)-\mathrm{S}(2)$	$82.66(9)$	$\mathrm{Fe}(3)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$134.85(4)$
$\mathrm{C}(11)-\mathrm{Fe}(3)-\mathrm{S}(2)$	$82.30(9)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.2(3)$
$\mathrm{C}(10)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$48.32(8)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	$121.5(2)$
$\mathrm{C}(11)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$78.19(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	$115.3(3)$
$\mathrm{S}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$54.52(4)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Fe}(4)$	$128.8(3)$
$\mathrm{C}(10)-\mathrm{Fe}(4)-\mathrm{S}(2)$	$86.75(11)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Fe}(3)$	$76.7(2)$
$\mathrm{C}(10)-\mathrm{Fe}(4)-\mathrm{Fe}(3)$	$53.20(11)$	$\mathrm{Fe}(4)-\mathrm{C}(10)-\mathrm{Fe}(3)$	$78.48(13)$
$\mathrm{S}(2)-\mathrm{Fe}(4)-\mathrm{Fe}(3)$	$55.70(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$124.2(3)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$	$114.72(12)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{Fe}(3)$	$65.7(2)$
		$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Fe}(3)$	$122.5(2)$

$2.20 \mathrm{mmol})$ and $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left(0.21 \mathrm{~cm}^{3}, 2.15\right.$ mmol) in THF ($30 \mathrm{~cm}^{3}$) gave a red-orange solution. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, to the solution was added ethyl bromide ($0.16 \mathrm{~cm}^{3}, 2.21 \mathrm{mmol}$) and then was allowed to warm to r.t. After a reaction period of 16 h at r.t., the solvent was removed at reduced pressure and the residue was extracted with a $9: 1(\mathrm{v} / \mathrm{v})$ mixture of petroleum ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. After removal of solvent, the residue was purified by filtration chromatography. Petroleum ether eluted a purple-red band which gave complex 1 (0.25 $\mathrm{g}, 38 \%)$. Petroleum ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1 \mathrm{v} / \mathrm{v}$) eluted a red band which yielded red crystals of complex 3a (0.13 g , 14%), m.p. $87-90^{\circ} \mathrm{C}$. Anal. Found: C, 29.15; H, 1.37. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires: C, 29.43; $\mathrm{H}, 1.45 \%$. ${ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm}) 1.39\left(\mathrm{t}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.49(\mathrm{q}$, $\left.2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 2.72\left(\mathrm{~m}, 4 \mathrm{H},=\mathrm{CH}+\mathrm{CH}_{3}\right), 3.79$ $(\mathrm{s}, 1 \mathrm{H},=\mathrm{CH})$. IR: $v_{\max }\left(\mathrm{cm}^{-1}\right) 2083 \mathrm{~m}, 2058 \mathrm{~s}, 2038 \mathrm{vs}$, 1997s, 1973s (CO).

3.3. Preparation of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHEt}\right)(\mu-\mathrm{Ph}-$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{3 b})$

Complex 3b was synthesized using a similar method to that for 3a. $\left[\left\{\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHEt}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$ prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.57 \mathrm{~g}$, from 1.49 mmol$)$ and $\mathrm{EtCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}(0.19 \mathrm{~g}, 1.60 \mathrm{mmol})$ in THF (30 cm^{3}) was treated with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.34 \mathrm{~g}, 0.99$ mmol) at $-78^{\circ} \mathrm{C}$. To the resulting mixture $\mathrm{PhCH}_{2} \mathrm{Cl}$ $\left(0.17 \mathrm{~cm}^{3}, 1.48 \mathrm{mmol}\right)$ was added and stirred at r.t. for 6 h . After similar work-up complex $1(0.15 \mathrm{~g}, 31 \%)$ and red crystals of complex $\mathbf{3 b}(0.12 \mathrm{~g}, 16 \%)$ were obtained. Complex 3b, m.p. $124-127^{\circ}$ C. Anal. Found: C, 35.80; $\mathrm{H}, 1.86 . \mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires: C, $35.88 ; \mathrm{H}, 1.83 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 1.42\left(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 2.25-2.74 (m, 2H, CH 2), $3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88-4.04$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 7.28(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=12.5$ $\mathrm{Hz}, \mathrm{CH})$. IR: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2083 \mathrm{~m}, 2056 \mathrm{~s}, 2037 \mathrm{vs}$, 2002s, 1987s, 1975s (CO).

3.4. Preparation of ($\mu-\eta^{2}-\mathrm{CH}=\mathrm{CH}-$ furyl-2)($\mu-\mathrm{EtS}$)-$\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(3 \mathrm{c})$

A similar procedure to that for 3a was used. $\left[\left(\mu-\eta^{2}-\right.\right.$ $\mathrm{CH}=\mathrm{CH}$-furyl- 2) $\left.(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$was prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8} \quad(0.53 \mathrm{~g}, \quad 1.38 \mathrm{mmol})$ and 2-furyl$\mathrm{CH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}(0.21 \mathrm{~g}, 1.35 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$. The reaction of the anion with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.30 \mathrm{~g}$, $0.87 \mathrm{mmol})$ and successive ethyl bromide $\left(0.14 \mathrm{~cm}^{3}\right.$, 1.87 mmol) gave, after removing the small amount of 1 by filtration chromatography, red crystals of complex 3c $(0.21 \mathrm{~g}, 46 \%)$, m.p. (dec.) $124^{\circ} \mathrm{C}$. Anal. Found: C, $32.27 ; \mathrm{H}, 1.53 . \mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{2}$ requires: C, $32.21 ; \mathrm{H}$, 1.38%. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm}) 1.40(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}$, CH_{3}), $2.45\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.63(\mathrm{~d}, 1 \mathrm{H}$, $J=14.4 \mathrm{~Hz}, \mathrm{CH}), 6.21(\mathrm{~s}, 2 \mathrm{H}$, furyl), $7.18(\mathrm{~s}, 1 \mathrm{H}$,
furyl), 8.42 (d, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH})$. IR: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$ 2085m, 2059s, 2039vs, 1995s (CO).

3.5. Preparation of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\left(\mu-\mathrm{CH}_{2}=\mathrm{CH}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(3 \boldsymbol{d})$

Complex 3d was synthesized using a similar method to that for 3c. $\left[\left\{\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$ prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.89 \mathrm{~g}, 2.33 \mathrm{mmol})$ and $\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}(0.38 \mathrm{~g}, 2.30 \mathrm{mmol})$ in THF (30 cm^{3}) was reacted with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.52 \mathrm{~g}, 1.51$ $\mathrm{mmol})$ and followed by $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}\left(0.22 \mathrm{~cm}^{3}, 2.54\right.$ mmol). Similar work-up to that for 3 c gave red crystals of complex $3 \mathbf{d}\left(0.26 \mathrm{~g}, 22^{\%}\right.$), m.p. $137-140^{\circ} \mathrm{C}$. Anal. Found: C, $35.58 ; \mathrm{H}, 1.62 . \mathrm{C}_{23} \mathrm{H}_{12} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires: C, 35.98 ; H, 1.58%. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 3.10(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH}), 5.13(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.25(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 8.72(\mathrm{~d}$, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH})$. IR: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2083 \mathrm{~m}, 2032 \mathrm{~s}$, 2007s, 1985s (CO).

3.6. Preparation of $\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right][\mu-\mathrm{PhS}]-$
 $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(4)$

$\left[\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-} \quad$ was prepared by a similar procedure to that for 3a. To the solution of $\left[\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.49 \mathrm{~g}, 1.28 \mathrm{mmol})$ and $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left(0.20 \mathrm{~cm}^{3}, 1.30 \mathrm{mmol}\right)$ in THF (25 cm^{3}) at $-78^{\circ} \mathrm{C}$ was added $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.30 \mathrm{~g}, 0.87$ mmol) and the mixture stirred for 30 min . The mixture was treated with $\mathrm{PhN}_{2} \mathrm{BF}_{4}(0.20 \mathrm{~g}, 1.04 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and stirred at r.t. for 5 h . Solvent was removed in vacuo to leave a brown residue, which was purified by column chromatography with petroleum ether$\mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1 \mathrm{v} / \mathrm{v})$ as eluent. The first purple-red band gave complex $1(0.11 \mathrm{~g}, 26 \%)$. The second red band gave red-orange crystals of complex $4(0.13 \mathrm{~g}, 20 \%)$. The followed tiny bands were not collected. 4: m.p. $108-111^{\circ} \mathrm{C}$. Anal. Found: C, 34.13; H, 1.73. $\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires: C, $34.00 ; \mathrm{H}, 1.36 \%{ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm}) 2.80\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3}\right.$ and CH$), 3.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 5.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.15-7.80(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$. IR: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2085 \mathrm{~m}, 2063 \mathrm{~m}, 2036 \mathrm{vs}, 2002 \mathrm{~s}, ~ 1981 \mathrm{~s}$, 1965m (CO).

3.7. Preparation of $\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right]$ -$[\mu-\mathrm{PhC}(\mathrm{O}) \mathrm{S}]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{5 a})$

A similar procedure to that for 3a was used to prepare intermediate anion $\left[\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mu-\right.$ S) $\left.\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}$. To a cooled solution of $\left[\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}-$ $(\mathrm{CO})_{8}(1.03 \mathrm{~g}, 2.70 \mathrm{mmol})$ and $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ $\left(0.26 \mathrm{~cm}^{3}, 2.66 \mathrm{mmol}\right.$) in THF ($30 \mathrm{~cm}^{3}$) was added

Table 3
Crystallographic data for complexes $\mathbf{3 d} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$ and $\mathbf{5 b}$

	3d• $0.5 \mathrm{C}_{6} \mathrm{H}_{12}$	5b
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Fe}_{4}$	$\mathrm{C}_{27} \mathrm{H}_{12} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Fe}_{4}$
Formula weight	809.93	847.89
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / n$ (no. 14)	$P \overline{1}$
$a(\AA)$	12.131(2)	9.300(2)
b (\AA)	21.206(4)	12.127(2)
$c(\AA)$	12.663(7)	15.377(3)
$\alpha\left({ }^{\circ}\right)$		104.67(3)
$\beta\left({ }^{\circ}\right)$	98.44(2)	98.16(3)
$\gamma\left({ }^{\circ}\right.$)		101.80(3)
$V\left(\AA^{3}\right)$	3222(1)	1607.5(6)
Z	4	2
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.669	1.752
Crystal size (mm)	$0.20 \times 0.20 \times 0.45$	$0.32 \times 0.26 \times 0.24$
Radiation $\lambda(\AA)$	0.71069	0.71073
$F(000)$	1624.00	844
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	19.50	19.65
Temperature (K)	293(1)	293(2)
Total reflections	5316	5073
Independent reflections	5030	4846
Reflections with $I>3 \sigma(I)^{\text {a }}$ or $I>2 \sigma(I){ }^{\text {b }}$	3799	4470
$R^{\text {a }}$ or $R_{1}{ }^{\text {b }}$	0.034	0.0484
$R_{w}{ }^{\text {a }}$ or $w R_{2}{ }^{\text {b }}$	0.042	0.1550

```
\({ }^{\text {a }}\) For complex 3d.
\({ }^{\mathrm{b}}\) For complex 5b. \(R\) or \(R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|, R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.\right.\) \(\left.\left.\mid F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]^{1 / 2}, w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w F_{\mathrm{o}}^{4}\right]^{1 / 2}\).
```

$\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.62 \mathrm{~g}, 1.80 \mathrm{mmol})$. The resultant mixture was reacted with $\mathrm{PhC}(\mathrm{O}) \mathrm{Cl}\left(0.32 \mathrm{~cm}^{3}, 2.27 \mathrm{mmol}\right)$. After a reaction period of 6 h at r.t., the solvent was removed at reduced pressure and the residue was extracted with a $9: 1(\mathrm{v} / \mathrm{v})$ mixture of petroleum ether$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. After removal of solvent, the residue was purified by filtration chromatography. Petroleum ether eluted a purple-red band which gave complex 1 ($0.21 \mathrm{~g}, 24 \%$). Petroleum ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 1 \mathrm{v} / \mathrm{v})$ eluted a red band which yielded dark red crystals of complex $5 \mathrm{a}(0.22 \mathrm{~g}, 16 \%)$, m.p. (dec.) $164{ }^{\circ} \mathrm{C}$. Anal. Found: C, 34.15; H, 1.39. $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{2}$ requires: C, $34.32 ; \mathrm{H}$, $1.31 \%{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.86(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 8.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph})$. IR: $v_{\max }\left(\mathrm{cm}^{-1}\right) 2087 \mathrm{~s}, 2060 \mathrm{~s}, 2039 \mathrm{vs}, 2009 \mathrm{~s}, 1996 \mathrm{~s}$, 1971s (Fe-CO); 1676m (CO).

3.8. Preparation of $\left(\mu-\eta^{2}-C H=C H-f u r y l-2\right)[\mu-P h-$ $\mathrm{CH}=\mathrm{CHC}(\mathrm{O}) \mathrm{S}]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{5 b})$

To the solution of $\mathrm{Na}^{+}\left[\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CH}\right.\right.$-furyl-2) $(\mu-$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.81 \mathrm{~g}$, $2.12 \mathrm{mmol})$ and 2-furyl- $\mathrm{CH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}(0.33 \mathrm{~g}, 2.11$ mmol) in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added at $-78^{\circ} \mathrm{C}(\mu-$ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.45 \mathrm{~g}, 1.31 \mathrm{mmol})$ and the mixture stirred for 30 min . The mixture was treated with $\mathrm{PhCH}=\mathrm{CHC}-$
(O) $\mathrm{Cl}(0.35 \mathrm{~g}, 2.10 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and then stirred at r.t. for 6 h . After the same work-up as described above, complex 1 ($0.08 \mathrm{~g}, 13 \%$) and complex $\mathbf{5 b}(0.47 \mathrm{~g}, 42 \%)$ were obtained. 5b: red crystals, m.p. $134-136^{\circ} \mathrm{C}$. Anal. Found: C, 37.70; H, 1.27. $\mathrm{C}_{27} \mathrm{H}_{12} \mathrm{Fe}_{4} \mathrm{O}_{14} \mathrm{~S}_{2}$ requires: C , 38.25 ; H, 1.43\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 4.73$ (d, $1 \mathrm{H}, J=13.1$ $\mathrm{Hz}, \mathrm{CH}), 6.31$ (s, 2H, furyl), $6.69(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, $\mathrm{CH}), 7.18$ (s, 1H, furyl), 7.30-7.49 (m, 5H, Ph), 7.83 (d, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 8.55(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}, \mathrm{CH}) . \mathrm{IR}$: $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2086 \mathrm{~s}, 2061 \mathrm{~s}, 2039 \mathrm{vs}, 2004 \mathrm{~s}, 1989 \mathrm{~s}(\mathrm{Fe}-\mathrm{CO})$; $1667 \mathrm{~m}(\mathrm{CO})$.

3.9. Preparation of $\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\left[\mu-\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{S}\right]-$ $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(5 \mathrm{c})$

To the solution of $\mathrm{Na}^{+}\left[\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$prepared from $\mathrm{Na}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}(0.59 \mathrm{~g}$, $1.54 \mathrm{mmol})$ and $\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{Cl}(0.25 \mathrm{~g}, 1.51 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added at $-78^{\circ} \mathrm{C}\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ $(0.33 \mathrm{~g}, 0.96 \mathrm{mmol})$ and the mixture stirred for 30 min . The mixture was treated with $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left(0.14 \mathrm{~cm}^{3}, 1.97\right.$ mmol) at $-78^{\circ} \mathrm{C}$ and then stirred at r.t. for 5 h . Filtration chromatography gave, after removing a small amount of 1, red crystals of 5c $(0.21 \mathrm{~g}, 28 \%)$, m.p. $118-120^{\circ} \mathrm{C}$. Anal. Found: C, 33.97; H, 1.44. $\mathrm{C}_{27} \mathrm{H}_{12} \mathrm{Fe}_{4} \mathrm{O}_{14} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 34.32 ; \mathrm{H}, 1.31 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta(\mathrm{ppm}) 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.82(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{CH})$, $7.37(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 8.81(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}, \mathrm{CH}) . \mathrm{IR}: v_{\max }$ $\left(\mathrm{cm}^{-1}\right) 2086 \mathrm{~s}, 2041 \mathrm{vs}$, 2007br ($\mathrm{Fe}-\mathrm{CO}$); 1724m (CO).

3.10. Crystal data and structure determination of complexes $\mathbf{3 d}$ and $\mathbf{5 b}$

Details are given in Table 3. Suitable crystals of complexes $\mathbf{3 d}$ and $\mathbf{5 b}$ were grown from petroleum ether$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at r.t. Data were collected on Rigaku AFC7R (for 3d) or Siemens P4 (for 5b) four-circle diffractometers using monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. The structures were solved by direct methods (SHELXS-86 [23] or Siemens SHELXTL) and refined by the full-matrix least-squares method with anisotropic thermal parameters for non-hydrogen atoms.

4. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 134592 for compound 3d and CCDC no. 134593 for compound $\mathbf{5 b}$.

Acknowledgements

We are grateful to the National Educational Ministry of China and the Chinese Academy of Science for financial support.

References

[1] R. Yanez, J. Ros, X. Solans, M. Font Altaba, R. Mathieu, New J. Chem. 12 (1988) 589
[2] J. Ros, X. Solans, M. Font Altaba, R. Mathieu, Organometallics 3 (1984) 1014.
[3] J. Ros, G. Commenges, R. Mathieu, X. Solans, M. Font Altaba, J. Chem. Soc. Dalton Trans. (1985) 1087.
[4] R. Yanez, J. Ros, R. Mathieu, J. Organomet. Chem. 389 (1990) 197.
[5] R. Yanez, J. Ros, R. Mathieu, J. Organomet. Chem. 414 (1991) 209.
[6] J. Ros, J.M. Vinas, R. Mathieu, X. Solans, M. Font-Bardia, J. Organomet. Chem. 307 (1988) C7.
[7] J. Ros, J.M. Vinas, R. Mathieu, X. Solans, M. Font-Bardia, J. Chem. Soc. Dalton Trans. (1988) 281.
[8] R. Yanez, J. Ros, R. Mathieu, X. Solans, M. Font-Bardia, J. Organomet. Chem. 389 (1990) 219.
[9] Z.-X. Wang, H. Zhao, Polyhedron 18 (1999) 1131.
[10] R. Havlin, G.R. Knox, J. Organomet. Chem. 4 (1965) 247.
[11] L.-C. Song, C.-G. Yan, Q.-M. Hu, R.-J. Wang, T.C.W. Mak, Organometallics 14 (1995) 5513 and references therein.
[12] L.-C. Song, Z.-Y. Zhao, J.-T. Wang, Youji Huaxue 2 (1987) 119.
[13] G. Le Borgne, D. Grandjean, J. Organomet. Chem. 92 (1975) 381.
[14] W.K. Dean, J. Organomet. Chem. 135 (1977) 195.
[15] J.M. Coleman, A. Wojeicki, P.J. Pollick, L.F. Dahl, Inorg. Chem. 6 (1967) 1236.
[16] Z.-X. Wang, C.-S. Jia, Z.-Y. Zhou, X.-G. Zhou, J. Organomet. Chem. 580 (1999) 201.
[17] L.-C. Song, X.-D. Qin, Q.-M. Hu, X.-Y. Huang, Organometallics 17 (1998) 5437.
[18] J. Ros, J.M. Viñas, R. Mathieu, X. Solans, M. Font-Bardia, J. Chem. Soc. Dalton Trans. (1988) 281.
[19] C.E. Sumner Jr., J.A. Collier, R. Pettit, Organometallics 1 (1982) 1350.
[20] D.T. Flood, Organic Synthesis, vol. 2, Wiley, New York, 1955, p. 295.
[21] (a) E.B. Womack, J. McWhirter, Organic Synthesis, vol. 3, Wiley, New York, 1955, pp. 714. (b) B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, fifth ed., Longman, London, 1989, pp. 692-693.
[22] L.E. Bogan Jr., D.A. Lesch, T.B. Rauchfuss, J. Organomet. Chem. 250 (1983) 429.
[23] G.M. Sheldrick, SHELXs-86, a package for the solution of crystal structures, University of Göttingen, Germany, 1986.

[^0]: * Corresponding author. Fax: + 86-551-3631760.

 E-mail address: zxwang@ustc.edu.cn (Z.-X. Wang)

